Main Bianco image.jpg
IMG_1518_edit.jpg
GROUP XMAS.jpg
2Pstage.png
tectumEP.png
Quad6May08_08.jpg
Main Bianco image.jpg

Bianco Lab


understanding the logic of brain circuits that control behaviour

SCROLL DOWN

Bianco Lab


understanding the logic of brain circuits that control behaviour

Research

Our aim is to understand fundamental aspects of the structure and operation of the neural circuits that process sensory information to control animal behaviour.

We work with larval zebrafish – a vertebrate model that has a tiny, optically transparent brain – enabling us to use advanced light microscopy techniques to monitor neural activity during behaviour.

2-photon and light sheet microscopes allow us to record activity at single cell resolution throughout the brain of transgenic fish expressing genetically-encoded calcium indicators, which report neural activity with changes in fluorescence.

Our focus is on brain circuits that process visual stimuli (for example resembling predators or prey) to control adaptive behavioural responses (such as escape or hunting). We build virtual reality environments for zebrafish and examine neural activity underlying visual perception and the generation of locomotor programmes whilst the animal responds to naturalistic visual stimuli.

 
IMG_1518_edit.jpg

News


News


BIANCO LAB NEWS

GROUP XMAS.jpg

People


People


PEOPLE

 

Former members:

Sara Contra, BSc student

Sam Pink, Research Tech

Paride Antinucci, Postdoc

Lukas Rabl, MSci student

Daniel Majd, MSci student

Joanna Lau, PhD student

Jade Serfaty, MSci student

Tom Hagley, MSci student

Alex Bloom, iBSc student

Nicole Maug, MSci student

Pedro Henriques, PhD student

Kristie Leung, iBSc student

Adam Selway, iBSc student

Holly Morley, MSc student

Dammy Onih, MSci student

Charlotte Leigh, iBSc student

Andrien Rajakumar, iBSc student

Yue Wu, MSc student

Niloy Rahmen, iBSc student

Mingxu Shan, MSc student

Sam Jackson, iBSc student

 
2Pstage.png

Join us/Contact


Join us/Contact


Join us

We enthusiastically encourage applications from prospective students or postdocs.

Techniques that we specialise in include 2-photon and light sheet microscopy, analysis of population dynamics in neural circuits, design of novel behavioural assays and development of optogenetic approaches for precise control of neural activity in vivo.

Please send an email outlining your research interests, along with your CV, to Isaac.

Phd programmes

Our lab is part of several excellent graduate programmes:

Wellcome Trust 4yr PhD in Optical Biology
UCL-Birkbeck MRC Doctoral Training Programme
• London Interdisciplinary Doctoral Programme
Sainsbury Wellcome Centre PhD Programme

Contact Us

Please contact Isaac Bianco for more information.
For directions to the lab, click here.

 
tectumEP.png

Publications


Publications


Publications

Featured Papers

Subsets of extraocular motoneurons produce kinematically distinct saccades during hunting and exploration. Dowell CK, Hawkins T, Bianco IH. biorXiv (2024). https://doi.org/10.1101/2024.08.12.607184

Kinematically distinct saccades are used in a context-dependent manner by larval zebrafish. Dowell CK, Lau JYN, Antinucci P, Bianco IH. Current Biology (2024). 10.1016/j.cub.2024.08.008

We characterize the repertoire of saccadic eye movements of larval zebrafish and examine their coordination with swims during visuomotor behaviors. Differences in timing, kinematics, and velocity main sequences indicate that different saccade types are controlled by distinct patterns of brainstem activity.

Mirror-assisted light-sheet microscopy: a simple upgrade to enable bi-directional sample excitation. Zylbertal A, Bianco IH. Neurophotonics (2024). doi.org/10.1117/1.NPh.11.3.035006

We describe a simple solution that uses a tiny mirrored prism to illuminate the ~25% of the zebrafish brain that is normally inaccessible to a laterally directed light-sheet.

A recurrent network architecture explains tectal activity dynamics and experience-dependent behaviour. Zylertal A, Bianco IH. eLife (2023). doi.org/10.7554/eLife.78381

We used light-sheet calcium imaging and computational modelling to explore how activity in neural networks affects their internal state and contributes to variability in activity and behaviour.

A calibrated optogenetic toolbox of stable zebrafish opsin lines. Antinucci P*, Dumitrescu AS*, Deleuze C, Morley HJ, Leung K, Hagley T, Kubo F, Baier H, Bianco IH*, Wyart C*. eLife (2020) 9:e54937 10.7554/eLife.54937

We generate nine transgenic lines expressing various optogenetic actuators and calibrate their efficacy using behavioural assays and in vivo electrophysiology.

An interhemispheric neural circuit allowing binocular integration in the optic tectum. Gebhardt C, Auer TO, Henriques PM, Rajan G, Duroure K, Bianco IH*, Del Bene F*. Nature Communications (2019) 10, 5471. doi:10.1038/s41467-019-13484-9

We describe a circuit motif for binocular vision in an animal lacking ipsilateral retinal projections: ‘Inter-tectal neurons’ are required for hunting larvae to strike at prey.

Pretectal neurons control hunting behaviour. Antinucci P, Folgueira M, Bianco IH. eLife (2019) 8 doi.org/10.7554/eLife.48114

We discovered a genetically-accessible population of pretectal neurons that satisfy the criteria of a ‘command system’ controlling hunting routines. These cells are active when zebrafish initiate hunting and optogenetic stimulation of single cells evokes complete hunting sequences in the absence of prey.

Nucleus Isthmi is required to sustain target pursuit during visually guided prey-catching. Henriques PM, Rahman N, Jackson SE, Bianco IH. Current Biology (2019) 29:1771-1786. doi.org/10.1016/j.cub.2019.04.064

We discovered that the nucleus isthmus (NI) is required for zebrafish larvae to sustain (but not initiate) hunting sequences and linked this function to a specific type of NI cell. To our knowledge, this is the first example of a neuron that promotes maintenance of stochastic action sequences.

Bianco IH and Engert F. Visuomotor transformations underlying hunting behavior in zebrafish. Current Biology (2015). 25:1-16. 10.1016/j.cub.2015.01.042

By combining 2-photon calcium imaging with a naturalistic hunting assay, we identified feature-analysing neurons in the optic tectum that selectively respond to optimal conjunctions of prey-like visual features, and bursts of premotor activity in tectal assemblies that precede hunting responses.

All Papers (chronological)

Kinematically distinct saccades are used in a context-dependent manner by larval zebrafish. Dowell CK, Lau JYN, Antinucci P, Bianco IH. Current Biology (2024). 10.1016/j.cub.2024.08.008

Mirror-assisted light-sheet microscopy: a simple upgrade to enable bi-directional sample excitation. Zylbertal A, Bianco IH. Neurophotonics (2024). doi.org/10.1117/1.NPh.11.3.035006

A recurrent network architecture explains tectal activity dynamics and experience-dependent behaviour. Zylertal A, Bianco IH. eLife (2023). doi.org/10.7554/eLife.78381

Foxd1 dependent induction of temporal retinal character is required for visual function. Hernández-Bejarano M, Gestri G, Monfries C, Tucker L, Dragomir E, Bianco IH, Bovolenta P, Wilson S, Cavodeassi F. Development (2022). 149(24):dev200938. doi: 10.1242/dev.200938

A Structural Atlas of the Developing Zebrafish Telencephalon Based on Spatially-Restricted Transgene Expression. Turner KJ, Hawkins TA, Henriques PM, Valdivia LE, Bianco IH, Wilson SW, Folgueira M. Front Neuroanat. (2022). 16:840924. doi: 10.3389/fnana.2022.840924

Loss of slc39a14 causes simultaneous manganese hypersensitivity and deficiency in zebrafish. Tuschl K, White RJ, Trivedi C, Valdivia LE, Niklaus S, Bianco IH, Dadswell C, González-Méndez R, Sealy IM, Neuhauss SCF, Houart C, Rihel J, Wilson SW, Busch-Nentwich EM. Dis Model Mech. (2022). 15:dmm044594. doi: 10.1242/dmm.044594.

CNS Hypomyelination Disrupts Axonal Conduction and Behavior in Larval Zebrafish. Madden ME, Suminaite D, Ortiz E, Early JJ, Koudelka S, Livesey MR, Bianco IH, Granato M, Lyons DA. J Neurosci. (2021). 41:9099-9111. doi: 10.1523/JNEUROSCI.0842-21.2021

Myelination induces axonal hotspots of synaptic vesicle fusion that promote sheath growth. Almeida RG, Williamson JM, Madden ME, Early JJ, Voas MG, Talbot WS, Bianco IH, Lyons DA. Curr Biol. (2021) 31:3743-3754.e5. doi: 10.1016/j.cub.2021.06.036

The Rac-GAP alpha2-Chimaerin Signals via CRMP2 and Stathmins in the Development of the Ocular Motor System. Carretero-Rodriguez L, Guðjónsdóttir R, Poparic I, Reilly ML, Chol M, Bianco IH, Chiapello M, Feret R, Deery MJ, Guthrie S. J Neurosci. (2021). 41:6652-6672. doi: 10.1523/JNEUROSCI.0983-19.2021

Real-time 3D movement correction for two-photon imaging in behaving animals. Griffiths VA, Valera AM, Lau JYN, Ros H, Marin B, Baragli C, Coyle D, Evans GJ, Konstantinou G, Younts TJ, Koimtzis T, Srinivas Nadella KMN, Kirkby PA, Bianco IH and Silver RA. Nature Methods (2020). doi.org/10.1038/s41592-020-0851-7

Perspectives in zebrafish research. Edited by: Mione MC, Blader P, Del Bene F, Trompouki E and Bianco IH. Frontiers in Cell and Developmental Biology (2020)

A calibrated optogenetic toolbox of stable zebrafish opsin lines. Antinucci P*, Dumitrescu AS*, Deleuze C, Morley HJ, Leung K, Hagley T, Kubo F, Baier H, Bianco IH*, Wyart C*. eLife (2020) 9:e54937 10.7554/eLife.54937

Anatomy and Connectivity of the Torus Longitudinalis of the Adult Zebrafish. Folgueira M, Riva-Mendoza S, Ferreño-Galmán N, Castro A, Bianco IH, Anadón R and Yáñez J. Front. Neural Circuits (2020) 14:8. doi:10.3389/fncir.2020.00008

An interhemispheric neural circuit allowing binocular integration in the optic tectum. Gebhardt C, Auer TO, Henriques PM, Rajan G, Duroure K, Bianco IH*, Del Bene F*. Nature Communications (2019) 10, 5471. doi:10.1038/s41467-019-13484-9

Pretectal neurons control hunting behaviour. Antinucci P, Folgueira M, Bianco IH. eLife (2019) 8 doi.org/10.7554/eLife.48114

Zebrafish oxytocin neurons drive nocifensive behavior via brainstem premotor targets. Wee CL, Nikitchenko M, Wang WC, Luks-Morgan SJ, Song E, Gagnon JA, Randlett O, Bianco IH, Lacoste AMB, Glushenkova E, Barrios JP, Schier AF, Kunes S, Engert F & Douglass AD. Nature Neuroscience (2019) doi.org/10.1038/s41593-019-0452-x

Nucleus Isthmi is required to sustain target pursuit during visually guided prey-catching. Henriques PM, Rahman N, Jackson SE, Bianco IH. Current Biology (2019) 29:1771-1786. doi.org/10.1016/j.cub.2019.04.064

Cellular-level understanding of supraspinal control: what can be learned from zebrafish? Lau JYN, Bianco IH, Severi KE. Curr Opin Physiol (2019) 8:141 doi.org/10.1016/j.cophys.2019.01.013

Compensatory growth renders Tcf7l1a dispensable for eye formation despite its requirement in eye field specification. Young RM, Hawkins TA, Cavodeassi F, Stickney HL, Schwarz Q, Lawrence LM, Wierzbicki C, Cheng BY, Luo J, Ambrosio EM, Klosner A, Sealy IM, Rowell J, Trivedi CA, Bianco IH, Allende ML, Busch-Nentwich EM, Gestri G, Wilson SW. Elife. (2019) 8. doi: 10.7554/eLife.40093

Gaze-stabilizing central vestibular neurons project asymmetrically to extraocular motoneuron pools. Schoppik D, Bianco IH, Prober DA, Douglass AD, Robson DN, Li JMB, Greenwood JSF, Soucy E, Engert F, Schier AF.  J Neurosci. (2017) pii: 1711-17. doi: 10.1523/JNEUROSCI.1711-17.2017

Sensorimotor computation underlying phototaxis in zebrafish. Wolf S, Dubreuil AM, Bertoni T, Böhm UL, Bormuth V, Candelier R, Karpenko S, Hildebrand DGC, Bianco IH, Monasson R, Debrégeas G. Nat Commun. (2017) 8:651. doi: 10.1038/s41467-017-00310-3

Whole-brain serial-section electron microscopy in larval zebrafish. Hildebrand DGC, Cicconet M, Torres RM, Choi W, Quan TM, Moon J, Wetzel AW, Scott Champion A, Graham BJ, Randlett O, Plummer GS, Portugues R, Bianco IH, Saalfeld S, Baden AD, Lillaney K, Burns R, Vogelstein JT, Schier AF, Lee WA, Jeong WK, Lichtman JW, Engert F.  Nature (2017). doi:10.1038/nature22356

Targeted Electroporation in Embryonic, Larval, and Adult Zebrafish. Zou M, Friedrich RW, Bianco IH. Methods Mol Biol (2016). 1451:259-69.

Bianco IH and Engert F. Visuomotor transformations underlying hunting behavior in zebrafish. Current Biology (2015). 25:1-16. 10.1016/j.cub.2015.01.042

Tcf7l2-dependent asymmetries in Wnt signalling mediate the left-right asymmetric differentiation of habenular neurons. Hüsken U, Stickney HL, Roussigne M, Beretta CA, Brinkmann I, Young RM, Bianco IH, Tsalavouta M, Zigman M, Hawkins TA, Wen L, Zhang B, Blader P, Lin S, Wilson SW, Carl M. Current Biology (2014). 24:2217-27.

Encoding asymmetry within neural circuits. Concha MC, Bianco IH, Wilson SW. Nature Reviews Neuroscience. (2012). 13:832-43.

The tangential nucleus controls a gravito-inertial vestibulo-ocular reflex. Bianco IH, Ma L-H, Schoppik D, Robson DN, Orger MB, Beck JC, Li JM, Schier AF, Engert F, Baker R. Current Biology (2012). 22:1285-95.

Prey capture behavior evoked by simple visual stimuli in larval zebrafish. Bianco IH, Kampff AR, Engert F. Front. Syst. Neurosci. (2011). 5:101.

Focal electroporation in zebrafish embryos and larvae. Tawk M, Bianco IH, Clarke JD. Methods Mol Biol. (2009). 546:145-51.

Nodal signalling imposes left-right asymmetry upon neurogenesis in the habenular nuclei. Roussigné M, Bianco IH, Wilson SW, Blader P. Development. (2009). 136:1549-57.

The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain. Bianco IH, Wilson SW. Philos Trans R Soc Lond B Biol Sci. (2009). 364:1005-20.

Brain asymmetry is encoded at the level of axon terminal morphology. Bianco IH, Carl M, Russell C, Clarke JD, Wilson SW. Neural Dev. (2008). 3:9.

Wnt/Axin1/beta-catenin signaling regulates asymmetric nodal activation, elaboration, and concordance of CNS asymmetries. Carl M, Bianco IH, Bajoghli B, Aghaallaei N, Czerny T, Wilson SW. Neuron. (2007). 55:393-405.

fsi zebrafish show concordant reversal of laterality of viscera, neuroanatomy, and a subset of behavioral responses. Barth KA, Miklosi A, Watkins J, Bianco IH, Wilson SW, Andrew RJ. Current Biology. (2005). 15:844-50.

Laterotopic representation of left-right information onto the dorso-ventral axis of a zebrafish midbrain target nucleus. Aizawa H, Bianco IH, Hamaoka T, Miyashita T, Uemura O, Concha ML, Russell C, Wilson SW, Okamoto H. Current Biology. (2005). 15:238-43.

Kinetics of a cellular nitric oxide/cGMP/phosphodiesterase-5 pathway. Mo E, Amin H, Bianco IH, Garthwaite J. J Biol Chem. (2004). 279:26149-58.

 
Quad6May08_08.jpg

Funding


Funding


Our work is generously supported by the following funders: