Retinofugal Projections
Retinal ganglion cells transmit visual information from the retina to the brain. 10 arborisation fields (AF) or retino-recipient brain areas have been identified in zebrafish (Burrill & Easter., 2004). 97% of retinal ganglion cell(RGC) axons terminate in the optic tectum (Arborisation field AF-10), with the remaining 3% terminating in AF-9. The other 9 arborisation fields are innervated by RGC axon collaterals. Single RGC axons can innervate multiple AFs before terminating in the optic tectum. Each AF in the larvae corresponds to a retino-recipient nucleus in the adult diencephalon (Robles et al., 2014). The visual system and how different types of visual stimuli affect behaviour is a very popular field of research in zebrafish. For an overview of connectivity and function of each AF and possible adult identities of these retino-recipient nuclei please read the individual tutorials.
A flythrough movie of a registered elavl3:H2B-GCaMP6s;atoh7:gapRFP larvae with the AFs pseudo-coloured can be seen here as part of the supplementary data for Antinucci et al(2019).
Click on a tutorial below to read more about the neuroanatomy and function of each AF.
some Arborisation fields receive biased retinal input
Schematics showing the result of DiI and DiD injections into dorsal and ventral hemiretinas of the contralateral eye.
Schematics showing the result of DiI and DiD injections into nasal and temporal hemiretinas of the contralateral eye.
Visual behaviours in larval zebrafish
Different arborisation fields are associated with different visual behaviours. Check the individual tutorials for each AF to see which visual behaviours each AF is associated with.
Publications
Robles, E., Laurell, E., Baier, H. (2014)
The Retinal Projectome Reveals Brain-Area-Specific Visual Representations Generated by Ganglion Cell Diversity.
Current biology : CB. 24(18):2085-96.
Burrill JD & Easter Jr SS
Development of the Retinofugal projections.
J Comp Neurology, 2004 pp.1-18.
Semmelhack, J.L., Donovan, J.C., Thiele, T.R., Kuehn, E., Laurell, E., Baier, H. (2014)
A dedicated visual pathway for prey detection in larval zebrafish.
eLIFE. 4:299-307.
Orger, M.B., Kampff, A.R., Severi, K.E., Bollmann, J.H., and Engert, F. (2008)
Control of visually guided behavior by distinct populations of spinal projection neurons.
Nature Neuroscience. 11(3):327-333.
Orger, M.B. (2016)
The Cellular Organization of Zebrafish Visuomotor Circuits.
Current biology : CB. 26:R377-R385.
Bianco & Engert (2015)
Visuomotor Transformations Underlying Hunting Behavior in Zebrafish
Current Biology, 25 (2015) 831-846. doi:10.1016/j.cub.2015.01.042
Kist AM & Portugues R (2019)
Optomotor Swimming in Larval Zebrafish Is Driven by Global Whole-Field Visual Motion and Local Light- Dark Transitions.
Cell Reports, 29 659-673.
Antinucci P, Folgueira M, Bianco IH.
Pretectal neurons control hunting behaviour.
eLife (2019) 8 doi.org/10.7554/eLife.48114
Temizer, I. et al (2015)
A Visual Pathway for Looming-Evoked Escape in Larval Zebrafish.
Current Biology, 25(14), pp.1823–1834.
Kramer, A., Wu, Y., Baier, H., Kubo, F. (2019)
Neuronal Architecture of a Visual Center that Processes Optic Flow.
Neuron. 103(1):118-132.e7.
Del Bene, F., Wyart, C., Robles, E., Tran, A., Looger, L., Scott, E.K., Isacoff, E.Y., and Baier, H. (2010)
Filtering of visual information in the tectum by an identified neural circuit.
Science (New York, N.Y.). 330(6004):669-673.
Romano, S.A., Pietri, T., Pérez-Schuster, V., Jouary, A., Haudrechy, M., Sumbre, G. (2015)
Spontaneous Neuronal Network Dynamics Reveal Circuit's Functional Adaptations for Behavior.
Neuron. 85(5):1070-85.
Gebhardt C, Auer TO, Henriques PM, Rajan G, Duroure K, Bianco IH*, Del Bene F*.
An interhemispheric neural circuit allowing binocular integration in the optic tectum.
Nature Communications (2019) 10, 5471. doi:10.1038/s41467-019-13484-9
Zhang, B.B., Yao, Y.Y., Zhang, H.F., Kawakami, K., Du, J.L. (2017)
Left Habenula Mediates Light-Preference Behavior in Zebrafish via an Asymmetrical Visual Pathway.
Neuron. 93(4):914-928.e4.
Cheng, R.K., Krishnan, S., Lin, Q., Kibat, C., Jesuthasan, S. (2017)
Characterization of a thalamic nucleus mediating habenula responses to changes in ambient illumination.
BMC Biology. 15:104.
Heap, L.A.L., Vanwalleghem, G., Thompson, A.W., Favre-Bulle, I.A., Scott, E.K. (2018)
Luminance Changes Drive Directional Startle through a Thalamic Pathway.
Neuron. 99(2):293-301.e4.
Förster, D., Helmbrecht, T.O., Mearns, D.S., Jordan, L., Mokayes, N., Baier, H. (2020)
Retinotectal circuitry of larval zebrafish is adapted to detection and pursuit of prey.
eLIFE. 9:e58596. DOI: https://doi.org/10.7554/eLife.58596